Chem 11 - Stoichiometry Calculations

Name \qquad

Show your work, circle your answers.

1. Given the balanced equation: $\mathbf{4 N H}_{\mathbf{3}}+\mathbf{5 O}_{\mathbf{2}} \rightarrow \mathbf{6} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{4 N O}$
a. How many moles of oxygen are needed to react with 6.5 moles of ammonia?
b. What mass of NH_{3} is needed to react with 0.500 moles of O_{2} ?
c. What mass of NO will be produced when 10.0 g of O_{2} react?
d. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are formed when 8.0 g of O_{2} react?
e. How many moles of NH_{3} are needed to react with $3.5 \xi 10^{22}$ molecules of O_{2} ?
2. Given the balanced equation:

$$
3 \mathrm{Cu}_{(\mathrm{s})}+8 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are produced from 50 moles of HNO_{3} ?
b. How many moles of NO are produced when 4.0 moles of Cu react?
c. How many moles of HNO_{3} are required to react completely with 5.0 moles of Cu ?
d. How many moles of NO are produced by the reaction of 6.35 g of Cu ?
e. What mass of NO is produced when 10.0 g of Cu react?
f. What mass of $\mathrm{H}_{2} \mathrm{O}$ is produced when 12.6 g of HNO_{3} react?
g. How many molecules of NO are produced when 45.0 g of Cu react?
3. Given the balanced equation

$$
\mathbf{N}_{2}+3 \mathbf{H}_{2} \rightarrow 2 \mathbf{N H}_{3}
$$

a. How many moles of H_{2} are needed to make 1.00 moles of NH_{3} ?
b. What mass of NH_{3} is produced from 0.500 moles of N_{2} ?
c. What mass of N_{2} is needed to react with 10.0 g of H_{2} ?
d. When $5.00 \xi 10^{-3} \mathrm{~g}$ of H_{2} react, how many molecules of NH_{3} are produced?
4. Given the balanced equation $\mathbf{2 C}_{5} \mathbf{H}_{11} \mathbf{O H}_{(\mathrm{g})}+\mathbf{1 5 O}_{\mathbf{2 (\mathrm { g })}} \rightarrow \mathbf{1 0 C O}_{\mathbf{2 (g)}}+\mathbf{1 2 H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$, at STP,
a. What volume of oxygen is needed to react with 2.0 litres of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}_{(\mathrm{g})}$?
b. What volume of oxygen is needed to react with $0.45 \mathrm{~L} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}_{(\mathrm{g})}$?
c. What volume of oxygen is needed to produce $15 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$?
d. What volume of oxygen is needed to produce $64 \mathrm{~g} \mathrm{CO}_{2(\mathrm{~g})}$?
e. What volume of oxygen is needed to produce $3.8 \xi 10^{26}$ molecules of water?
f. What volume of oxygen is needed to react with $19 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}_{(\mathrm{g})}$?
5. Given the balanced equation $\quad \mathbf{4} \mathbf{N H}_{\mathbf{3 (g)}}+\mathbf{5} \mathbf{0}_{\mathbf{2 (g)}} \rightarrow \mathbf{6} \mathbf{H}_{2} \mathbf{O}_{(\mathrm{g})}+\mathbf{4} \mathbf{N O}_{(\mathrm{g})}$

b. What volume of $\mathrm{NH}_{3(\mathrm{~g})}$ at STP is required to produce 1.20 moles of $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$?
6. Given the balanced equation below, what volume of 3.00 M hydrochloric acid is required to react with 12.4 g of zinc?

$$
\mathbf{Z n}_{(\mathrm{s})}+2 \mathbf{H C l}_{(\mathrm{aq})} \rightarrow \mathbf{Z n C l}_{2(\mathrm{aq})}+\mathbf{H}_{2(\mathrm{~g})}
$$

7. What volume of $0.250 \mathrm{M} \mathrm{HCl}_{(\text {aq) }}$ is required to completely neutralise 25.0 mL of $0.318 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$?
8. Excess aluminum metal is reacted with $3.00 \mathrm{M} \mathrm{NaOH}_{(\mathrm{aq})}$ according to the balanced reaction shown below. What volume of sodium hydroxide is needed to produce 50.0 L of hydrogen gas @ STP?

$$
2 \mathrm{Al}_{(\mathrm{s})}+2 \mathrm{NaOH}_{(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaAlO}_{2(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}
$$

9. Given the balanced reaction $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}+2 \mathrm{KOH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{HOH}_{(\mathrm{l})}+\mathrm{K}_{2} \mathrm{HPO}_{4(\mathrm{aq})}$, 19.8 mL of $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$ react with 25.0 mL of $0.500 \mathrm{M} \mathrm{KOH}_{\text {(aq) }}$. What is the molarity of the $\mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}$?
10. 50.0 mL of sulphuric acid react with 24.4 mL of 2.20 M aqueous ammonia solution to produce ammonium sulphate. What is the concentration of the sulphuric acid?
11. What volume of 0.0250 M calcium hydroxide is needed to react completely with 25.0 mL of 0.125 M aluminum sulphate solution?
