Name _____

Show your work, circle your answers.

- 1. Given the balanced equation: $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$
 - a. How many moles of oxygen are needed to react with 6.5 moles of ammonia?

b. What mass of NH_3 is needed to react with 0.500 moles of O_2 ?

c. What mass of NO will be produced when 10.0 g of O_2 react?

d. How many molecules of H_2O are formed when 8.0 g of O_2 react?

e. How many moles of NH₃ are needed to react with 3.5 ξ 10²² molecules of O₂?

2. Given the balanced equation:

$$3Cu_{(s)} + 8HNO_{3(aq)} \rightarrow 3Cu(NO_3)_{2(aq)} + 2NO_{(g)} + 4H_2O_{(l)}$$

- a. How many molecules of H_2O are produced from 50 moles of HNO_3 ?
- b. How many moles of NO are produced when 4.0 moles of Cu react?
- c. How many moles of HNO₃ are required to react completely with 5.0 moles of Cu?
- d. How many moles of NO are produced by the reaction of 6.35 g of Cu?
- e. What mass of NO is produced when 10.0 g of Cu react?
- f. What mass of H₂O is produced when 12.6 g of HNO₃ react?
- g. How many molecules of NO are produced when 45.0 g of Cu react?

3. Given the balanced equation

$$N_2 + 3H_2 \rightarrow 2NH_3$$

- a. How many moles of H₂ are needed to make 1.00 moles of NH₃?
- b. What mass of NH_3 is produced from 0.500 moles of N_2 ?
- c. What mass of N_2 is needed to react with 10.0 g of H_2 ?
- d. When 5.00 ξ 10⁻³ g of H₂ react, how many molecules of NH₃ are produced?
- 4. Given the balanced equation $2C_5H_{11}OH_{(g)} + 15O_{2(g)} \rightarrow 10CO_{2(g)} + 12H_2O_{(g)}$, at STP,
 - a. What volume of oxygen is needed to react with 2.0 litres of $C_5H_{11}OH_{(g)}$?
 - b. What volume of oxygen is needed to react with 0.45 L $C_5H_{11}OH_{(g)}$?

c. What volume of oxygen is needed to produce 15 L $H_2O_{(g)}$?

d. What volume of oxygen is needed to produce 64 g $CO_{2(g)}$?

- e. What volume of oxygen is needed to produce 3.8 $\xi \ 10^{26}$ molecules of water?
- f. What volume of oxygen is needed to react with 19 mol $C_5H_{11}OH_{(g)}$?

- 5. Given the balanced equation $4 \operatorname{NH}_{3(g)} + 5 \operatorname{O}_{2(g)} \rightarrow 6 \operatorname{H}_2O_{(g)} + 4 \operatorname{NO}_{(g)}$
 - a. What volume of $O_{2(g)}$ is required to react with 20.3 L of $NH_{3(g)}$ at STP?
 - b. What volume of $NH_{3(g)}$ at STP is required to produce 1.20 moles of $H_2O_{(g)}$?
- 6. Given the balanced equation below, what volume of 3.00 M hydrochloric acid is required to react with 12.4 g of zinc? $Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}$

7. What volume of 0.250 M HCl_(aq) is required to completely neutralise 25.0 mL of 0.318 M NaOH_(aq)?

8. Excess aluminum metal is reacted with 3.00 M NaOH_(aq) according to the balanced reaction shown below. What volume of sodium hydroxide is needed to produce 50.0 L of hydrogen gas @ STP?
2Al_(s) + 2NaOH_(aq) + 2H₂O_(l) → 2NaAlO_{2(aq)} + 3H_{2(g)}

9. Given the balanced reaction $H_3PO_{4(aq)} + 2KOH_{(aq)} \rightarrow 2HOH_{(l)} + K_2HPO_{4(aq)}$, 19.8 mL of $H_3PO_{4(aq)}$ react with 25.0 mL of 0.500 M KOH_(aq). What is the molarity of the $H_3PO_{4(aq)}$?

10. 50.0 mL of sulphuric acid react with 24.4 mL of 2.20 M aqueous ammonia solution to produce ammonium sulphate. What is the concentration of the sulphuric acid?

11. What volume of 0.0250 M calcium hydroxide is needed to react completely with 25.0 mL of 0.125 M aluminum sulphate solution?